PM 6680B / PM 6681 / PM 6681R

Technical Data

Timer / Counter / Analyzers Rubidium Frequency Reference / Counter / Calibrator

PM 6681: the highest performance timer/counter/ analyzer available
The PM 6681 from Fluke sets the new standard for measurement and analysis of time intervals, frequency, phase and jitter. For development, calibration or challenging production test applications, the PM 6681 is the leader.

Check these key PM 6681 performance parameters, and compare the new state-of-the-art for yourself:
■ 50 ps single-shot time interval resolution (1 ps averaged)
■ 1.25 mV vertical resolution

- 300 MHz range, options to 4.2 GHz
- 8 k readings/s to internal memory
- 250 readings/s over GPIB
- Continuous single-period measurements at up to 40 k readings/s
- Unique hold-off and arming delay facilities to measure any part of any complex signal
- TimeView ${ }^{\mathrm{TM}}$ PC software for time and frequency analysis

So for the ultimate performance, choose the advanced PM 6681.

PM 6680B: the value leader
For applications that don't demand the PM 6681's sheer performance, check into Fluke's PM 6680B.
This model offers a combination of performance and price that makes it today's undisputed value leader. Key specs. are identical to the PM 6681, except for:

- 250 ps single-shot time interval resolution
- 100 ps averaged time interval resolution
- 225 MHz range, options to 4.2 GHz
- 2 k readings/s to internal memory

So, for today's top timer/counter value, choose the economic PM 6680B.

PM 6681R: ideal for calibration applications

The Rubidium reference of the PM 6681R makes this instrument the most accurate Frequency Reference/Counter/Calibrator for the calibration of frequency, time or phase.

■ High accuracy and short warmup times:
5 min. to lock
4×10^{-10} within $>10 \mathrm{~min}$.
Aging 1×10^{-9} in 10 year

- Calibrates Frequency, Time or Phase
- Calibrates any application specific frequency
- 5x 10 MHz \& 1 x 5 MHz buffered reference outputs

Measuring Functions

Refer to table 1 for uncertainty information. Inputs A and B can be swapped internally in all modes except Rise and Fall Time.

Frequency A, B, C

Range:

Input A (PM 6681):
Input A (PM 6680B):
Input B:
Input C:
Resolution (PM 6681):
Resolution (PM 6680B):
$10^{-10} \mathrm{~Hz}$ to 300 MHz
$10^{-10} \mathrm{~Hz}$ to 225 MHz
$10^{-10} \mathrm{~Hz}$ to 100 MHz
Up to $1.3 \mathrm{GHz}, 2.7 \mathrm{GHz}$ or 4.2 GHz with options
11 digits in 1s measuring time
10 digits in 1s measuring time

Frequency Burst $\boldsymbol{A}, \mathrm{B}, \mathrm{C}$

Frequency and PRF of burst signals can be measured without external control signal and with selectable start arming delay.

Range:

Input A (PM 6681):
Input A (PM 6680B):
Input B:
Input C (PM 6681):
Start Delay Range
(PM 6681)
Period A

Range (PM 6681):	3.3 ns to $10^{10} \mathrm{~S}$
Range(PM 6680B):	6 ns to $10^{10} \mathrm{~S}$
Resolution (PM 6681):	11 digits in 1 s measuring time
Resolution (PM 6680B):	10 digits in 1 s measuring time

Ratio $A / B, C / B$

Ratio $\boldsymbol{A} / \mathbf{B}, \mathbf{C} / \mathbf{B}$	10^{-9} to 10^{15}
Range:	
Frequency Range:	$10^{-10} \mathrm{~Hz}$ to 160 MHz
\quad Input A, B:	Up to $1.3 \mathrm{GHz}, 2.7 \mathrm{GHz}$ or 4.2 GHz Input C:
	with options

Time Interval \boldsymbol{A} to \mathbf{B}

Range:
single shot (PM 6681): PM 6680B):
Frequency Range:

Pulse Width \boldsymbol{A}	
Range: 3 ns to $10^{10} \mathrm{~s}$ Frequency Range: Up to 160 MHz	

Range:	$3 \mathrm{~ns} \mathrm{to} 10^{10} \mathrm{~s}$
Frequency Range:	Up to 160 MHz
Input Amplitude (PM 6681):	$>250 \mathrm{mV} \mathrm{p}-\mathrm{p}$
Input Amplitude (PM 6680B):	$>500 \mathrm{mV} \mathrm{p}-\mathrm{p}$

Phase A Relative B

Range:	-180° to $+360^{\circ}$
Resolution:	0.01
Frequency Range:	0.03 Hz to 160 MHz

Duty Factor \boldsymbol{A}	
Range:	0 to 1
Frequency Range:	0.11 Hz to 160 MHz

Totalize A, B

Range:
Frequency Range:
A Gated by B:

A Start/Stop by B:
0 to $10^{17}, 0$ to 10^{10} in A-B modes 0 to 160 MHz Event counting on Input A during the presence of a pulse on Input B. Single or cumulative event counting during set measuring time measuring time
Event counting on Input A between two consecutive pulses on Input B

Manual A-B:
Manual/Timed A-B:

Input A minus Input B event counting with manual start and stop Input A minus Input B event counting with manual start. Stop after set measuring time. Time counted from first trigger event on A.

AC/DC Voltage A, B

Range:
Frequency Range (PM 6680B)
-50 V to +50 V
DC, 1 Hz to 100 MHz
Mode:
Resolution (PM 6681):
Resolution (PM 6680B):
Gated Volt:
DC, 100 Hz to 100 MHz
$\mathrm{V}_{\text {max }}, \mathrm{V}_{\text {min }}, \mathrm{V}_{\mathrm{p}-\mathrm{p}}$
1.25 mV

20 mV
External masking of unwanted signal components such as overshoot

Input and Output Specifications

Inputs A and B (PM 6681)

Frequency Range:

DC-Coupled:	DC to 300 MHz
AC-Coupled:	10 Hz to 300 MHz

Coupling:
Impedance:

Trigger Slope:
Channel Inputs:
Max. channel timing difference:
Sensitivity:

Pulse Width:
Attenuation:
Hysteresis Window (x1):
Variable Hysteresis A (x1):
Dynamic Range (x):
Trigger Level:
Range:
Resolution (x 1):
Uncertainty (xl):
AUTO Trigger Level:

Frequency:
Low Pass Filter A:
Digital Low Pass Filter:
Trigger Indicator:
Max Voltage Without
Damage: $1 \mathrm{M} \Omega$:
50Ω :

10 Hz to 300 MHz
AC or DC
$1 \mathrm{M} \Omega / 15 \mathrm{pF}$ or 50Ω (VSWR 2:1)
$1 \mathrm{M} \Omega / 65 \mathrm{pF}$ or 50Ω with
PM 9611/80 rear panel inputs
Positive or negative
Separate, common A or
swapped
500 ps
20 mV ms, $<100 \mathrm{MHz}$
$30 \mathrm{mV} \mathrm{ms}, 100 \mathrm{MHz}$ to 200 MHz
40 mV ms, 200 MHz to 250 MHz
$60 \mathrm{mV} \mathrm{ms},>250 \mathrm{MHz}$
$>5 \mathrm{~ns}$ at $60 \mathrm{mV} \mathrm{p}-\mathrm{p}$,
$>3 \mathrm{~ns}$ at 90 mV p-p
xl or x 10
20 mV p-p
30 mV p-p to 10 V p-p up to 120 MHz
60 mV p-p to 10 V p-p within
$\pm 5 \mathrm{~V}$ window
Read-Out on display
(x1): -5 V to +5 V
(x10): -50 V to +50 V
1.25 mV
$\pm(4 \mathrm{mV}+1 \%$ of trigger level)
Trigger level is automatically set
to 50% point of input signal
(10\% and 90\% for Rise/Fall Time,
75\% and 25\% for variable hysteresis A)
$>1 \mathrm{~Hz}$
100 kHz fixed. $>40 \mathrm{~dB}$
attenuation at 1 MHz
1 Hz to 10 MHz using trigger Hold-Off
Tri-state LED-indicator
350 V (DC + AC pk) at DC to 440 Hz , falling to $12 \mathrm{~V} \mathrm{rms}(\mathrm{x} 1)$ and 120 V rms (x10) at 1 MHz
12 V rms

Inputs A and B (PM 6680B)

Frequency Range:

DC-Coupled:
AC-Coupled:
Coupling:
Rise Time
Impedance:

Trigger Slope:
Channel Inputs:
Max. channel timing difference: 1 n
Sensitivity:

DC to 225 MHz
10 Hz to 225 MHz
AC or DC
Approx. 1.5 ns
$1 \mathrm{M} \Omega / 30 \mathrm{pF}$ or 50Ω (VSWR 2:1)
$1 \mathrm{M} \Omega / 80 \mathrm{pF}$ or 50Ω (with
PM 9611/80 rear panel inputs)
Positive or negative
Separate, common A or swapped
1 ns
20 mV ms, $\quad 100 \mathrm{MHz}$
30 mV ms, 100 MHz to 200 MHz

Pulse Width:

Attenuation:

Hysteresis Window (x1):
Variable Hysteresis A (x1):
Dynamic Range (x 1):
Trigger Level:
Range:
Range (cont'd):
Resolution (x):
Uncertainty (xl):
AUTO Trigger Level:

Frequency:
Amplitude:
Low Pass Filter A:
Digital Low Pass Filter:
Trigger Indicator: Max Voltage Without Damage: $1 \mathrm{M} \Omega$:
$50 \Omega:$

Input C (Option PM 9621)

Frequency Range:
70 MHz to 1.3 GHz
Prescale Factor:
256 (PM 6680B)
512 (PM 6681)
Operating Input Voltage
Range:
70 to 900 MHz :
0.9 to 1.1 GHz :
1.1 to 1.3 GHz :

Amplitude Modulation:
DC to 0.1 MHz :
0.1 to 6 MHz :

Minimum signal must exceed minimum operating input voltage

Impedance:

Max Voltage Without
Damage:
Connector:
10 mV rms to 12 V rms
15 mV rms to 12 V rms
40 mV rms to 12 V rms

Input C (Option PM 9624)
Frequency Range:
100 MHz to 2.7 GHz
Prescale Factor:
16 (PM 6680B)
Operating Input Voltage
Range:
100 to 300 MHz :
0.3 to 2.5 GHz :
2.5 to 2.7 GHz :

Amplitude Modulation
Impedance:
Max Voltage Without
Damage:
Connector:
32 (PM 6681)

Input C (Option PM 9625B)

Frequency Range :
Prescale Factor:
Operating Input Voltage Range:
150 to 300 MHz :
0.3 to 2.2 GHz :
2.2 to 3.5 GHz :
3.5 to 4.2 GHz :

Amplitude Modulation
Impedance:
Max Voltage Without Damage:

40 mV ms, $>200 \mathrm{MHz}$
$>5 \mathrm{~ns}$ at $60 \mathrm{mV} \mathrm{p}-\mathrm{p}$,
$>3 \mathrm{~ns}$ at 90 mV p-p
xl or x 10
30 mV p-p
60 mV p-p to 10 V p-p up to 120 MHz
60 mV p-p to 10 V p-p within
$\pm 5 \mathrm{~V}$ window
Read-Out on display
(x) : -5.1 V to +5.1 V
(x10): -51 V to +51 V
20 mV
$\pm(20 \mathrm{mV}+1 \%$ of trigger level)
Trigger level is automatically set
to 50% point of input signal
(10\% and 90\% for Rise/Fall Time,
75% and 25% for variable hysteresis A)
$>100 \mathrm{~Hz}$
$>150 \mathrm{mV}$ p-p
100 kHz fixed. $>40 \mathrm{~dB}$ atten. at 1 MHz
1 Hz to 5 MHz using trigger Hold-Off
Tri-state LED-indicator
350 V (DC + AC pk) at DC to
440 Hz , falling to $12 \mathrm{~V} \mathrm{rms} \mathrm{(xl)}$
and 120 V rms $(\mathrm{x} 10)$ at 1 MHz
12 V rms

Connector:
Type N Female
Rear Panel Inputs and Outputs

Reference Input (PM 6681):	1, 2, 5, or $10 \mathrm{MHz}>200 \mathrm{mV} \mathrm{rms}$ signal
Reference Input (PM 6680):	$10 \mathrm{MHz}>500 \mathrm{mV} \mathrm{rms} \mathrm{signal}$
Reference Output (PM 6680B):	$1 \mathrm{x} 10 \mathrm{MHz}>0.5 \mathrm{~V}$ ms sinewave into 50Ω load
PM 6681R:	$5 \mathrm{x} 10 \mathrm{MHz} \& 1 \mathrm{x} 5 \mathrm{MHz} .>0.5 \mathrm{~V} \mathrm{~ms}$ sinewave into 50Ω load
Arming Input: performed.	Most measuring functions can be
Frequency Range (PM 6681):	DC to 100 MHz
Frequency Range	
(PM 6680B):	DC to 50 MHz
Slew Rate:	$>2 \mathrm{~V} / \mathrm{s}$
Trigger Level:	TTL level, 1.4V nominal
Trigger Slope:	Positive or negative
Gate Output:	Gate open/gate closed signal output
Trigger Level Outputs:	Outputs for channel A and B trigger levels
Probe Compensation Outputs:	Outputs for channel A and B to adjust for best pulse response when using probes for counter input
Analog output:	0 to 4.98 V proportional to 3 selected digits

Auxiliary Functions

Trigger Hold-Off

Time Delay Range (PM 6681): 60 ns to $1.34 \mathrm{~s}, 10 \mathrm{~ns}$ resolution
Time Delay Range (PM 6680B): 200 ns to $1.6 \mathrm{~s}, 100 \mathrm{~ns}$ resolution
Event Delay Range B (PM 6681): 2 to $2^{24}-1$, max. 100 MHz
Event Delay Range B (PM 6680B):2 to $2^{24}-1$, max. 20 MHz
External Arming
Time Delay Range B, E:
Event Delay Range B:
200 ns to $1.6 \mathrm{~s}, 100 \mathrm{~ns}$ resolution

Statistics

Functions:	Maximum, Minimum, Mean and Standard Deviation
Sample Size (PM 6681):	1 to 2×10^{-9} samples
Sample Size (PM 6680B):	1 to 65535 samples

Mathematics
Functions:
$\left(\mathrm{K}^{*} \mathrm{X}+\mathrm{L}\right) / \mathrm{M}$ and $(\mathrm{K} / \mathrm{X}+\mathrm{L}) / \mathrm{M}$. X is cur rent reading and K, L and M are con stants; set via keyboard or as frozen ref erence value (X_{0}) or as value from pre ceding measurement ($\mathrm{X}_{\mathrm{n}-1}$)

Other Functions

Measuring Time (PM 6681):	Single cycle, 80, 160, 320, 640, 1280 ns and $20 \mu \mathrm{~s}$ to 20 s (or to 400s for some functions)
Measuring Time (PM 6680B):	Single cycle, 0.8, 1.6, 3.2, 6.4, $12.8 \mu \mathrm{~s}$ and 50 s to 20 s (or to 400s for some functions)
Display Hold:	Freezes measuring result, until a new measurement is initiated via Restart
Settings:	20 instrument setups can be saved and recalled from internal non-volatile memory. 10 can be user protected.
Auxiliary Menu:	Gives access to additional functions
Display:	10-digit LCD with high-luminance backlight

GPIB Interface

Programmable Functions:
All front panel accessible functions
Compatibility:
Interface Functions:

IEEE 488.2-1987, SCPI
1991.0

SH1, AH1, T6, L4, SR1, RL1,

	DC1, DT1, E2			
Time Stamping (PM 6681):		125 ns resolution		
Measurement Rate*	PM 6681	PM 6680B		
Via GPIB	250 readings $/ \mathrm{s}$	125 readings $/ \mathrm{s}$		
To Internal Memory:	8 k readings $/ \mathrm{s}$	2 k readings $/ \mathrm{s}$		

Internal Memory Size (PM 6681)* Up to 6100 readings
Internal Memory Size (PM 6680B)*Up to 2600 readings
Data Output:
ASCII, IEEE double precision
floating point

TimeView ${ }^{\text {TM }}$ Time \& Frequency Analysis Software

TimeView runs on an IBM PC/AT or compatible with VGA monitor.

Data Capture Modes and Measurement Rate*

PM 6681

Free Running Measurement: 8k readings/s Repetitive Sampling: Continuous Single-Period:

Waveform Capture: Data Analysis Features:

Up to 10 MHz
Up to 40k readings/s (200 ns resolution)
Yes N/A
Measurement data vs time
FFT Graph
Root Allan Variance
Smoothing function
Zoom function
Cursor measurements

PM 6680B

2 k readings/s
Up to 10 MHz
N/A
-

Distribution Histogram Setup and Measurement Data Archive and printing

* Depending on measurement function and internal data format

Systematic Uncertainties

Trigger Level Timing Error

Time Interval, Rise/Fall Time, Pulse Width, Duty Factor (x 1):
Trigger Level Timing Error =

$$
=\text { TLU x }(1 / \text { Sx }+1 / \text { Sy }) \pm 0.5 \text { x Hyst. x }(1 / S x+1 / \text { Sy })
$$

Where:
$\mathrm{Sx}=$ Slew rate at start trigger point in V / s
Sy $=$ Slew rate at stop trigger point in V/s
TLU = Trigger Level Uncertainty for each model in Volt
Hyst. $=$ Hysteresis Window for each model in Volt Hyst. $=0$ for Time Interval and Rise/Fall Time for PM 6681
Phase, sinewave signals and trigger levels $\mathrm{OV}(\mathrm{x} 1)$:
Trigger Level Timing Error (PM 6681) =
$=\left[0.2 / \mathrm{V} \mathrm{pk}\right.$ of $\mathrm{A}+0.2 / \mathrm{V} \mathrm{pk}$ of B] ${ }^{\circ}$
Trigger Level Timing Error (PM 6680B) =
$=[0.3 / \mathrm{V} \mathrm{pk}(\mathrm{A})+0.3 / \mathrm{V} \mathrm{pk}(\mathrm{B})]^{\circ} \pm[0.9 / \mathrm{V} \mathrm{pk}(\mathrm{A})-0.9 / \mathrm{V} \mathrm{pk}$ (B)] ${ }^{\circ}$

Where:
V pk $(\mathrm{A})=$ Input A peak voltage in Volt
V pk $(\mathrm{B})=$ Input B peak voltage in Volt

Measurement Uncertainties

Measuring Functio	Random Uncertainty rms	Systematic Uncertainty
Time Interval Pulse Width Rise/Fall Time	$\frac{\sqrt{(\mathrm{QE})^{2}+(\text { Start Trigger Error })^{2}+(\text { Stop Trigger Error })^{2}}}{\sqrt{\mathrm{~N}}}$ or min.: 1 ps for PM 6681, 100 ps for PM 6680B	$\begin{aligned} & \pm \text { Trigger Level Timing Error } \\ & \pm 500 \text { ps Systematic Error (PM 6681) } \\ & \pm 1 \text { ns Systematic Error (PM 6680B) } \\ & \pm \text { Time Base Error x Time Interval } \end{aligned}$
Frequency Period	$\frac{\sqrt{(Q E)^{2}+2 \times(\text { Start Trigger Error) }}{ }^{2}}{\text { Measuring Time }}$ x Frequency or Period	$\begin{aligned} & \pm \text { Time Base Error x Freq. or Period } \\ & \pm \frac{\text { QE x Freq. or Period }}{\text { Measuring Time }} \end{aligned}$
Ratio $\mathrm{f}_{1} / \mathrm{f}_{2}$	$\left.\sqrt{(\text { Prescaler Factor) })^{2}+2 \mathrm{x}\left(\mathrm{f}_{1} \times \text { Start Trigger Error of } \mathrm{f}_{2}\right.}\right)^{2}$ $\mathrm{f}_{2} \mathrm{x}$ Measuring Time	
Phase	$\frac{\sqrt{(\mathrm{QE})^{2}+(\text { Start Trigger Error })^{2}+(\text { Stop Trigger Error })^{2}}}{\sqrt{\mathrm{~N}}} \text { x Freq. x } 360^{\circ}$ or min.: (1 ps for PM 6681, 100 ps for PM 6680B) x Freq. x 360°	$\begin{aligned} & \pm \text { Trigger Level Timing Error } \\ & \pm 500 \text { ps Sys. Error x Freq. x } 360^{\circ} \text { (PM 6681) } \\ & \pm 1 \text { ns Sys. Error x Freq. x } 360^{\circ} \text { (PM 6680B) } \end{aligned}$
Duty Factor	$\frac{\sqrt{(\mathrm{QE})^{2}+\left(\text { Start Trigger Error) }{ }^{2} \mp(\text { Stop Trigger Error })^{2}\right.}}{\sqrt{\mathrm{N}}} \mathrm{x} \text { Frequency }$ or min.: (1 ps for PM 6681, 100 ps for PM 6680B) x Frequency	$\begin{aligned} & \pm \text { Trigger Level Timing Error x Freq. } \\ & \pm 500 \text { ps Sys. Error x Freq. (PM 6681) } \\ & \pm 1 \mathrm{~ns} \text { Syst. Error x Freq. (PM 6680B) } \end{aligned}$

Table 1: Measurement Uncertainties

Random Uncertainties

(QE) Quantization Error
(PM 6681): $\quad 10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ 0 to $10^{\circ} \mathrm{C}$ and 40 to $50^{\circ} \mathrm{C}$:
(QE) Quantization Error
(PM 6680B): $\quad 0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}: \quad 250 \mathrm{ps} \mathrm{rms}$
(N)Number of samples
(PM 6681):
50 ps rms
75 ps rms

Frequency $<12 \mathrm{kHz}$: Measuring Time x Frequency/2
Frequency $>12 \mathrm{kHz}$: Measuring Time x 6000
(N) Number of samples
(PM 6680B):

Start/Stop Trigger Errors:

Frequency $<2 \mathrm{kHz}$: Measuring Time x Frequency/2
Frequency $>2 \mathrm{kHz}$: Measuring Time x 1000
$\frac{\sqrt{(\text { Vnoise-input })^{2}+(\text { Vnoise-signal) }}{ }^{2}}{\text { Signal slew rate (V/s) at trigger point }} \mathrm{rms}$
Vnoise-input (PM 6681): $\quad 100 \mu \mathrm{~V}$ rms typical
Vnoise-input (PM 6680B): $\quad 200 \mu \mathrm{~V}$ rms typical
Vnoise-signal:
The rms noise of the input signal

Display Resolution

LSD Displayed

Unit value of the least significant digit displayed. All calculated LSDs should be rounded to the nearest decade (e.g. 0.3 Hz is rounded to $0.1 \mathrm{~Hz}, 5 \mathrm{~Hz}$ is rounded to 10 Hz .) and cannot exceed the 12th digit. Frequency and Period LSD Displayed (PM 6681)

LSD Displayed (PM 6680B)

Time Interval, RT, FT, PW
LSD Displayed (PM 6681)
$50 \mathrm{ps} x$ Frequency or Period measuring time
500 ps x Frequency or Period measuring time

Phase

50 ps

$\sqrt{\mathrm{N}}$

LSD Displayed (PM 6680B)

Duty Factor

LSD Displayed

LSD Displayed
Ratio $\mathbf{f 1 / f 2}$
LSD Displayed
500 ps
$\sqrt{\mathrm{N}}$
1×10^{-6}

Prescaler Factor . $\mathrm{f}_{2} \mathrm{x}$ measuring time

Time Base Options

Option model:	PM668-/-1-	PM668-/-5-	PM668-/-6-	PM668-/-7-
Retro-fittable option: Time base type:	non retrofit. Standard	$\begin{aligned} & \text { PM9691/011 } \\ & \text { OCX0 } \end{aligned}$	$\begin{aligned} & \hline \text { PM9692/011 } \\ & \text { OCXO } \\ & \hline \end{aligned}$	non retro-fit. Rubidium
Uncertainty due to: Calibration adjustment tolerance, at $+23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$	$<1 \times 10^{-6}$	$<2 \times 10^{-8}$	$<5 \times 10^{-9}$	$<5 \times 10^{-11}$
Ageing:per 24 hr. per month per year	n.a. $<5 \times 10^{-7}$ $<5 \times 10^{-6}$	$\begin{aligned} & <5 \times 10^{-10} \\ & <1 \times 10^{-8} \\ & <7.5 \times 10^{-8} \end{aligned}$	$\begin{aligned} & <3 \times 10^{-10} \\ & <3 \times 10^{-9} \\ & <2 \times 10^{-8} \end{aligned}$	$\begin{aligned} & \text { n.a. } \\ & <5 \times 10^{-11} \\ & <2 \times 10^{-10} \end{aligned}$
Temperature variation: $0^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}$, $20^{\circ} \mathrm{C}-26^{\circ} \mathrm{C}$ (typ. values)	$\begin{aligned} & <1 \times 10^{-5} \\ & <3 \times 10^{-6} \end{aligned}$	$\begin{aligned} & <5 \times 10^{-9} \\ & <6 \times 10^{-10} \end{aligned}$	$\begin{aligned} & <2.5 \times 10^{-19} \\ & <4 \times 10^{-10} \end{aligned}$	$\begin{aligned} & <3 \times 10^{-10} \\ & <5 \times 10^{-11} \end{aligned}$
Power voltage variation: $\pm 10 \%$	$<1 \times 10^{-8}$	$<5 \times 10^{-10}$	$<5 \times 10^{-10}$	$<1 \times 10^{-11}$
Short term stability: $\tau=1 \mathrm{~S}$ (Root Allan Variance) $\tau=10 \mathrm{~S}$ (typical values) $\tau=100 \mathrm{~s}$	not specified	$\begin{aligned} & <5 \times 10^{-12} \\ & <5 \times 10^{-12} \\ & \text { n.a. } \end{aligned}$	$\begin{aligned} & <5 \times 10^{-12} \\ & <5 \times 10^{-12} \\ & \text { n.a. } \end{aligned}$	$\begin{aligned} & <5 \times 10^{-11} \\ & <1.5 \times 10^{-11} \\ & <5 \times 10^{-12} \end{aligned}$
Power-on stability: Deviation versus final value after 24 hr on time, after a warm-up time of:	$\begin{aligned} & \text { n.a. } \\ & 30 \mathrm{~min} \end{aligned}$	$\begin{aligned} & <1 \times 10^{-8} \\ & 10 \mathrm{~min} \end{aligned}$	$\begin{aligned} & <5 \times 10^{-9} \\ & 10 \mathrm{~min} \end{aligned}$	$\begin{aligned} & <4 \times 10^{-10} \\ & 10 \mathrm{~min} \end{aligned}$
Total uncertainty, for operating temperature $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, at $2 \sigma(95 \%)$ confidence interval: 1 year after calibration 2 years after calibration	$\begin{aligned} & <1.2 \times 10^{-5} \\ & <1.5 \times 10^{-5} \end{aligned}$	$\begin{aligned} & <1 \times 10^{-7} \\ & <2 \times 10^{-7} \end{aligned}$	$\begin{aligned} & <2.5 \times 10^{-8} \\ & <5 \times 10^{-8} \end{aligned}$	$\begin{aligned} & <7 \times 10^{-10} \\ & <9 \times 10^{-10} \end{aligned}$
Typical total uncertainty, for operating temperature $20^{\circ} \mathrm{C}$ to $26^{\circ} \mathrm{C}$, at $2 \sigma(95 \%)$ confidence interval: 1 year after calibration 2 years after calibration	$\begin{aligned} & <7 \times 10^{-6} \\ & <1.2 \times 10^{-5} \end{aligned}$	$\begin{aligned} & <1 \times 10^{-7} \\ & <2 \times 10^{-7} \end{aligned}$	$\begin{aligned} & <2.5 \times 10^{-8} \\ & <5 \times 10^{-8} \end{aligned}$	$\begin{aligned} & <6 \times 10^{-10} \\ & <8 \times 10^{-10} \end{aligned}$

n.a. \quad Not discernible, neglectable versus $1^{\circ} \mathrm{C}$ temperature variation.
(1) After 48 hours of continuous operation, PM9692 typical value $1 \times 10^{-10} / 24 \mathrm{~h}$
(2) After 1 month of continuous operation
(3) Typical value. Aging during 10 year $<1 \times 10^{-9}$

Explanation
Calibration Adjustment Tolerance is the maximal tolerated deviation from the true 10 MHz frequency after a calibration. When the reference frequency does not exceed the tolerance limits at the moment of calibration, an adjustment is not needed.
Total uncertainty is the total possible deviation from the true 10 MHz value under influence of frequency drift due to ageing and ambient temperature variations versus the reference temperature. The operating temperature range and the calibration interval are part of this specification.

General Specifications

Environmental Data

Operating Temp
StorageTemp :
Vibration:
Shock:
Reliability:
Safety:

EMC:

Power Requirements

90 V rms to 265 V rms, 45 Hz to 440 Hz ,
35W (PM 6680B - 6681)
100 W during warm-up (5 min.), 47 W during normal operation (PM 6681R)
®

Dimensions and Weight	
Width:	315 mm (12.4 in),
Height:	$86 \mathrm{~mm}(3.4 \mathrm{in})$,
Depth:	395 mm (15.6 in)
Weight PM 6680B,	
PM 6681:	Net $4 \mathrm{~kg}(8.5 \mathrm{lb})$, Shipping $7 \mathrm{~kg}(15 \mathrm{lb})$
Weight PM 6681R:	Net $4.8 \mathrm{~kg}(10.5 \mathrm{lb})$, Shipping $7.8 \mathrm{~kg}(16.8 \mathrm{lb})$

Ordering

Basic Models

PM 6680B/016

PM 6681/016

225 MHz, 250 ps Timer Counter including Standard Time Base GPIB-interface and Time \& Frequency Software TimeView $300 \mathrm{MHz}, 50 \mathrm{ps}$ Timer/Counter including Standard Time Base, External Reference Frequency Multiplier (1,2 or 5 MHz), GPIB-interface and Time \& Frequency Software, TimeView

Rubidium Reference Basic Model

PM 6681R/076
300 MHz Frequency Reference/ Counter/Calibrator including GPIB-interface and Time \& Frequency Software, TimeView

Included with Instrument

One year product warranty, line cord, operator manual, and Certificate of Calibration Practices

Input Frequency Options (PM 6680B, PM 6681, PM 6681R)

PM 668 _/4	1.3 GHz Input C (PM 9621)
PM 668 _/6	2.7 GHz Input C (PM 9624)
PM 668 _/8	4.2 GHz Input C (PM 9625B)

Time Base Options (PM 6680B, PM 6681)

668 _ /_ 5 _	Very High Stability Oven Time Base (PM 9691)
PM 668 _ /_ 6	Ultra High Stability Oven Time Base (PM 9692)

Example Ordering Configuration

To order the PM 6681300 MHz , 50 ps version with the 2.7 GHz input C and Standard Time Base, select the complete Model Number: PM 6681/616

Options and Accessories

PM 9611/80
PM 9621
PM 9624
PM 9625B
PM 9691
PM 9692
PM 9622/00
PM 9627
PM 9627H
PM 9020/002
PM 9639

Rear Panel Inputs (front inputs disconnected)
1.3 GHz Input C
2.7 GHz Input C
4.2 GHz Input C

Very High Stability Oven Time Base Ultra High Stability Oven Time Base Rack-Mount Kit
Carrying Case
Heavy Duty Alumium Carrying Case 200 MHz 10:1 probe $1 \mathrm{M} \Omega / 30 \mathrm{pF}$ (for PM6680B)
$2.3 \mathrm{GHz} 500 \Omega$ probe 10:1 (BNC)

When ordered together with the basic counter, options are factory installed.
Options ordered separately can be customer retrofitted, except
PM 9611/80 Rear Panel Inputs.
SW Drivers on request
MET/CAL procedures are available
HPVEE driver is available
LabView driver is available from National Instruments (PM6681)

Manuals

Operator *
Programming*
Service
*No charge with purchase of unit

Factory Warranty

One year product warranty
Two year warranty on Rubidium Element

Fluke Corporation

P.O. Box 9090, Everett, WA 98206

Fluke Europe B.V.

P.O. Box 1186,

5602 BD Eindhoven,
The Netherlands
For more information call:
In the U.S.A.: (800) 443-5853
or Fax: (425) 356-5116
In Europe/M-East:
+31 (0)40 2678200
or Fax: +31 (0)40 2678222
In Canada: (905) 890-7600
or Fax: (905) 890-6866
From other countries:
+1 (425) 356-5500
or Fax: +1 (425) 356-5116
Web access: http://www.fluke.com

